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Models of competition based on the Lotka--Volterra equation are introduced in this researching in
order to develop an intelligent robot for a rice production ecosystem. These prediction equations are useful
to estimate the competition between populations or biomasses of rice plants and weeds in different phases
of the rice crop season and using this information about the superior plants, the robot will make decision
about the appropriate timing for removing the snails in excess in paddy field; therefore snails remaining in
the field can eat weed and rice plants will grow up with less competition.

INTRODUCTION

The development of a robot for an artificial ecosys-
tem of agricultural production demands understanding
and modeling an agricultural ecosystem. Damoto et al.
(2003) reported the Lotka—Volterra equations for the
competitive relation between crop and weeds. In this
study, we will predict the populations of rice plants, and
superior weeds (Tamagayatsuri (smallflower umbrella
sedge), and Azena (smallflower umbrella sedge)) in
paddy field by using models of interactions among three
species on the agricultural ecosystem of the rice farming
system in order to develop an intelligent robot which
executes the tasks of control of weeds and snails in the
paddy (Figure 1). Complex ecosystems with many spe-
cies interacting with each other nonlinearly tend to
exhibit chaotic dynamics (Keeling et al., 2002; Tuda and
Shimada, 2005; Vano, et al., 2006).

’ SPECIES IN COMPETITION IN THE
AGRICULTURAL PRODUCTION ECOSYSTEM

Two species in competition: rice plants and weed
The equations in our models for rice plants and
weed are as follows

anN, _ N +a,N,
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where, N: density or biomass of rice plants, N,: density
or biomass of weed, r;: intrinsic rate of rice plants, 7,
intrinsic rate of weeds, a,,: weeds to rice plants competi-
tion coefficient, a,: rice plants to weeds competition
coefficient, K: rice plants capacity and K,: weeds carry-
ing capacity.
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Fig. 1. Agricultural production ecosystem in paddy field.

To understand the competition dynamics ecological-
ly we examine solutions at equilibrium analytically. The
way to accomplish this is to set the two equations equal
to zero and solve both for N, as a function of N, (Gotelli,
1998). The results are two equations for straight lines.
These straight lines are called isoclines (Equations 3 and
4). An isocline represents combinations of N, and N, for
which there is no net increase or decrease in population
growth for each species (because dN/dt=0.) Where the
lines cross, growth rates are zero for both species.

N, = K- aN, ®

N, = K;— a, N, @
Case 1: The rice plants isocline is above the weed iso-
cline. In the region below of both of isoclines, the popu-
lations and biomasses of weed and rice plants both
increase. In the area of the chart between the two iso-
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clines, the population of weed isoclines decreases where
as population of rice plants increases. The black circle at
this point represents a stable equilibrium. The conclu-
sion is that the population of weed declines to zero and
rice plants increases to its carrying capacity (X,). In this
case rice plants have competitively excluded weed (Fig.
2a).

Case 2: Weed isocline is above rice plants isocline.
In the region below of both of isoclines, the populations
and biomasses of rice plants and weed both increase. In
the area of the chart between the two isoclines, the pop-
ulations and biomasses of rice plants decrease whereas
the populations and biomasses of weed continue to
increase. The result is that the populations and biomass-
es of rice plants decline to zero and weed increases to its
carrying capacity (K,). In this case the weed has com-
petitively excluded the rice plants (Fig. 2b).

Case 3: The isoclines of the rice plant and weed
cross one another. In this case the carrying capacity of
rice plants (X)) is higher than the carrying capacity of
weed divided by the competition coefficient (K,/a,,), and
the carrying capacity of weed (K,) is higher than the car-
rying capacity of rice plants divided by the competition
coefficient (K/a,). In the area below both rice plants
and weed isoclines and above both rice plants and weed
isoclines the populations and biomasses increase or
decrease as in the first two cases, and there is an unsta-
ble equilibrium point where the rice plants and weed iso-
clines intersect. For the populations and biomasses
above the weed isocline and below the rice plants iso-
cline, the result becomes same as in the first case: com-
petitive exclusion of weed by rice plants. In the area
above the rice plants isocline and below the weed iso-
cline, the result is the same as in the second case: com-
petitive exclusion of rice plant by weed. The two stable
equilibrium points are again represented by black cir-
cles. In this case, the result will depend on the initial pop-
ulations or abundances of rice plants and weed (Fig. 2c).

Case 4: The isoclines cross one another, but in this
case both rice plants and weed’ carrying capacities are
lower than the other’s carrying capacity divided by the
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Fig. 2. State space graphs of the populations of ricé plants and
weed.

competition coefficient. Again, below both rice plants
and weed isoclines the populations increase and above
both rice plants and weed isoclines the populations
decrease. In this case, however, when the populations
and biomasses of the rice plants and weed are between
the isoclines their vectors always head toward the inter-
section of the isoclines and two species are able to coex-
ist at this stable equilibrium point. This is the result will
not depend on the initial abundances (Fig. 2d).

Jacobian Matrix for rice plants and weed

If J(N,, N,) is a fixed point, we can use the equations
1 and 2 when growth rates are zero and then construct a
Jacobian matrix.

Z—AZI%NI@— J\f‘—“—“[ﬁ;f@]—vz—)

0=7N,- T‘I‘g‘z - a‘”}g L ®)
N, =er2(1— Ml__)
di K,

0=7N, 7,N,2 0NN, )

K, K,

Then we define the system of differential equations
using the equations 5 and 6.

d(Egb) 9(Egb)
N, oN,
JWN,, Ny) =
d(FEg6) d(Fgb6)
aN, aN,

And we do linearization in order to find the Jacobian of
the vector function of the nonlinear system. We get the
rendered general Jacobian matrix for rice plants and
weed in competition as follows, .

! I o Qeh _aph
JV,, N,) R 1 " ‘ "
1y iVe) =
Oloy 7 " Qo7
- Gl 22 N,- %2
K, ° 2 K,”* K
)

Using the isoclines of the equations 3 and 4, we can
know the general stationary point P, and P,

P (K~ a,N,, K~ a N, )

K,—N, )
b
(2273 2o

We could analyze the stability of the system by
trough the evaluation of the Jacobian matrix in each
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fixed points and find the eigenvalues and eigenvectors.
An eigenvalue of a square matrix is a scalar (1) and the
points attracted are negative eigenvalue and the points
repelled are positive eigenvalues. An eigenvector is an
axis of attraction. If the eigenvalues have negative real
parts, the fixed point is asymptotically stable (attractor).
If at least one eigenvalue has positive real part, the fixed
point is unstable (repeller). If eigenvalues are pure
imaginery, the fixed point could be stable or unstable.

Three species in competition: rice plants and
weeds (Tamagayatsuri and Azena)

Lotka—Volterra—type competition models that involve
three superior species (rice plants, Tamagayatsuri and
Azena) will have the following equations:

Equation for population growth of rice plants.

dN, _ Ni+aNy+a,N,
=1 2 ) ®)
Equation for population growth of Tamagayatsuri.
aN, N,+0, N, +0a,,N,
g =1 e ®)
Equation for population growth of Azena.
dN; Ny+o,N,+o,N,
- =r,Ny{1- % ) (10)

where N,: density or biomass of rice plant biomass, N,:
density or biomass of Tamagayatsuri, N,: density or bio-
mass of Azena, 7: intrinsic rate of rice plants, 7,: intrinsic
rate of Tamagayatsuri, 7, intrinsic rate of Azena, a,:
Tamagayatsuri to rice plants competition coefficient, a,,:
Azena to rice plants competition coefficient, a,,: rice
plants to Tamagayatsuri competition coefficient, a,,:
Azena to Tamagayatsuri competition coefficient, a,,: rice
plants to Azena competition coefficient, a,,: Tamagayatsuri
to Azena competition coefficient, K|: rice plants carrying
capacity, K,: Tamagayatsuri carrying capacity and K;:
Azena carrying capacity. The populations of the superi-
or weeds, Tamagayatsuri and Azena were 750 and 496,
respectively in a lot of 50 m? with a population of 750
rice plants and practicing organic agriculture in Kyushu
University Farm on August of 1996 (Table 1). A chart
with the three species (rice plants, Tamagayatsuri and
Azena) in competition after transplanting on June 20%,
2006, in an area of 50 m? is presented in Fig. 3. In order
to make the chart, we coded and run a program in
Matlab and solved the ordinary differential equation sys-
tem by the numerical method of Runge-Kutta. The data
considered were: 7, = 0.15, r, = 0.20, 7, = 0.15, a,, = 0.06,
a,; = 0.08, a, = 0.06, a,, = 0.07, a,, = 0.08, a, = 0.07, K, =
760, K, = 500 and K, = 200. The initial conditions for the
three superior species in the agricultural production

ecosystem were as follows N, = 750, N, = 1 and N, = 1.
We can also see from the Fig. 3 that after 20 days after
transplanting of rice seedlings, the populations of Azena
and Tamagayatsuri and rice plants are increasing. In the
case of rice plants there is minor error due we used
Lotka—Volterra to model the competition among them.
The population of rice plants should be almost constant
over the crop season. The populations of the three spe-
cies in the same plot on July 30", 2006 (forty days after
transplanting) were as follows, N, = 742, N, = 476 and N,
= 38 and the populations of three superior species
became stable after 60 days after transplanting,.

The general isoclines for three species in competition
are as follows.

Isocline 1.

leKl_aIZNZ_alaNS an
Isocline 2.

N, = Ky~ ayN, — a,N; (12)
Isocline 3.

N3:K3_a31N1—'a321V2 (13)

Table 1. Results of researching on kind and population of
superior weeds in lowland paddy field at Kyushu
University farm on August 12th, 1996

Experiment Site Tamagayatsuri Azena
a. Organic Agriculture 496 38
Without chemicals
b. Habitual Practice 0 0
(Herbicide)

Tamagayatsuri: smallflower umbrella sedge (Cyperus dif-
Sformis L.)

Azena: common false pimpernel (Lindernia procumbens
(Krock.) Borbas — [Lindernia pyxidaria L.] )

The weeds were researched on August 12th, 1996 in an
experimental site of 50 square meters.
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Fig. 8. Populations of three superior species in competition (rice
plants, Tamagayatsuri and Azena) after transplanting of
rice seedlings in a lot of 50 m? in Kyushu University Farm
on June 20™, 2006.
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The Fig. 4 shows us the three isoclines of the competi-
tion model among three superior species (rice plants,
Tamagayatsuri and Azena). In Lotka—Volterra model the
three species have same populations and coexist in an
equilibrium point, P, in natural ecosystems. However, in
the agricultural production ecosystem of paddy, the
period of the crop season is much shorter and farmers
do several farm works such as: irrigation, remove of
weeds and snails, so the P,is not reached. The Fig. 5
shows the directions of vectors fields of the three spe-
cies in the competition model in the agricultural produc-
tion ecosystem of paddy. A phase portrait between rice
plants and Tamagayatsuri is showed in the Fig. 6, where-
as the Fig. 7 shows us a phase portrait among three spe-
cies in competition (rice plants, Tamagayatsuri and
Azena).
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Fig. 4. Isoclines of the competition model between three species
(rice plants, Tamagayatsuri and Azena).

Jacobian Matrix for rice plants, Tamagayatsuri and
Azena

If J(N,, N,, N,) is a fixed point, we can use the equa-
tions 8, 9, and 10 when growth rates are zero and then
construct a Jacobian matrix.

dofl\tfl =VIN1(1— N+a,N,+a,N, )
K,
0 - TlNl_ T}‘?’f _ alzr}(]vleZ _ aw’r}é\]le (14)
1 1 1
anN, N,+a, N, +a,,N,
dt _VzNZ(l_ K, )
0 = 7,N,~ 7‘2[?[22 - a217:2élez _ aza'r;;’vvaa (15)
2 2 2
dN3 _ N3+a31N1+a32N2
dt "T3N3(1_ K, )

7, N2 o7 N, N, 0,7 N, N,
0=7,N_ 3413 _ 317 3 1+Y3 _ 327 3+ V24 Y3 (16)
K, K, K, .
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Fig. 5. Directions of vector fields of the three species (rice plants,
Tamagayatsuri and Azena) in competition model in the
agricultural production ecosystem of paddy.

Then we define the system of differential equations
using the equations 14, 15 and 16.

3(Eqld) a(Eqld) 8(Eqld)
aN, aN, aN,

3(EqlB) a(Eqlb) a(Eqlb)
aN, aN, aN,

3(Eqle) 9(Eql6) a(Eql6)
aN, aN, aN,

JN,, N, Np) =

And we do linearization in order to find the Jacobian of
the vector function of the nonlinear system. We get the
rendered general Jacobian matrix for three species in
competition as follows,
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Fig. 6. Phase portrait between rice plants and Tamagayatsuri.
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where
" Q7 Q137
ay =7 —2 K, N,- Ve N, - Ve N,
1 1
4 U1 7 3"y
by=7,-2 % Nym =N, = N,
2 2
7 A 73 327y
033='}"3—2 K3N3_ e 1= K 'NZ
3 3

Using the isoclines of the equations 11, 12 and 13 we can
make the general equation of the stationary points P, P,
and P,
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Fig. 7. Phase portrait between three species in competition (rice
plants, Tamagayatsuri and Azena).

K, ~Ny=azN, Ky~ Ng—-oy N, K -N,-a,N,
P )

Ay ’ Oy ! ay,

(19

Ps( Ka—]\g?—ozazl\f2 , K, —-]\2-—0,131\]3 , Kz—]\(/;j—ale )
31 12 23

20)

To analyze the stability of the agricultural production
ecosystem, we should evaluate the Jacobian matrix for
rice plants, Azena, and Tamagayatsuri in each fixed
point and obtain the eigenvalues and eigenvectors. The
following is the analysis of the agricultural production
ecosystem considering the stationary point P, of the
equation 18 and the Jacobian matrix of the equation 17

Oy —Qyy Q3
J@)=|-b, by by
—Cy —Cyp Cas

where

alZT‘l
K,

v
a, =" _2?1 K~ a,Ny— a N, - Kz~ 0N N
1

_ al3rl

K, (K= 05 N = 0, N,)

Aty
Q= K (K~ aipNp— a,5N;)
1
Qal
Q= ——— (Kl_ alzNz_ al3N3)

K,

a7t
b, = % (Ko~ 05, Ny~ a5y Ny)

1

a2l'r2

K, (K- @ Ny aNy)

7,
b =1~ 2 (o= i~ 0N, =

- 5% (N~ aN,)
K,
a7
by = % (K= 0 N, — azpN,)
2

Cy = a%ra (Ky~ 05, N, ~ azN;)

3

Cap = a%% (K= 0N\ — a5 N,)

3

7. a7
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K, K

3
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The characteristic equation is given by
det([A] -AID =0

If [A] is a nxn matrix, then [X] # 0 is an eigenvector of
[A] if [A][X] = A[X] where A is a scalar and [X] # 0. The
scalar A is called the eigenvalue of [A] and [X] is called
the eigenvector corresponding to the eigenvalue A.

Oy "A —yy Qg
det| -b, bgy-4 by [=0
—Cy —Cyy Cas _/1'

det=A+B+C=0

A= "/18 +(a/11 + bzz + 033)/12 - (aubzz+ @1Cys + bzzcaa" bzscsz)/1

+ a11b22033 - a11b23032
B= amblz’1 - a12b12033 - a12b23cal
C= a’lﬁciil}' - a/lablchiz - aleZZCBI
C = ayCad - a/lsblzcsz = Qy3bsCy
det = -A* +(E)A? ~(k)A + k=0
where
k=0, + by + Cy

kz = a’12b12 + a/llb22 + a’l3cal + a11033 + bZZCBS - b23032
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Ky = Gy bypCay ~ @11D5Cap ~ 019D 15C 57 O19D9Ca1— QgD 15Can— G1absCay
We get the following equation
=+ DA (DA + k=0 21

The equation 21 has three cubic roots, which are the
eigenvalues. If we also consider the following data: N ;=
742, N,= 1, Ny= 1, r,= 0.15, r,= 0.2, r,= 0.15, a,,= 0.06,
a,= 0.08, a,= 0.06, a,= 0.07, a,= 0.08, a,,=0.07, K,=
750, K,= 500 and K,= 200, we can get the Jacobian
Matrix as follows,

-2.85 -0.009 -0.012
J(P,) ={-0.00024 0.18  —0.000028
-0.00006 -0.000052  0.089

We evaluated the Jacobian matrix in the point P, (750,
455, 141) and got the following eigenvalues: A,= —2.85,
A= 0.18 and A,= 0.89, therefore P, is unstable.

DISCUSSION

The farm works such as: tillage, paddling, trans-
planting and irrigations produce different initial condi-
tions of the populations of rice plants and weeds such as
Tamagayatsuri and Azena. The models, as an integral
part of the development of an intelligent robot for an
agricultural production ecosystem, estimate quantita-
tively the populations or biomasses of superior species
over the time of the crop season. The prediction equa-
tions or models generated will be introduced into the
memory of the agricultural production ecosystem robot
in order to make decisions, in the different phases of the
crop season, about the number of snails to be removed
from paddy and we can change a harmful snail to a use-
ful mollusk eating the weeds which are a constraint of
both conservation agriculture production and the bal-

ance preservation of the rice agricultural ecosystem.

CONCLUSION

The stability of the competition among these three
superior plants of rice production ecosystem is predicted
by through of the eigenvalues of fixed points considering
different farm works or phases of paddy. From our anal-
ysis of the competition among three superior plants (rice
plants, Tamagayatsuri and Azena) without predation by
golden apple snail, we can predict they coexist at a sta-
ble equilibrium point. It means the system is not chaotic
but stable. The models generated will be introduced
into the agricultural production ecosystem robot; there-
fore the robot can make decisions about the number of
snails to remove from paddy. It is also necessary to con-
sider factors, such as temperature, light and water depth
dependency, which influences the snail’s activity.
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Models of the predation of rice plants and weeds by golden apple snails based on the Lotka— Volterra
equations and the equations of Holling are introduced in this researching. These prediction equations are
useful to estimate the number of snails in different phases of the rice crop season; however they should be
modified to fit better to the rice production ecosystem and then this information will be used for the agri-
cultural production robot in order to make decisions about the appropriate timing for removing the snails in

excess in paddy field.

INTRODUCTION

In the ecosystem of the paddy, the golden apple
snails are serious invaders in Asian paddy. The snails
cause immediate damage to the ybung seedlings espe-
cially in conservation agriculture. In the Figure 1, the
snails voraciously eat rice plants just transplanted at
Kyushu University Farm. The farm work to remove snails
is tedious and the hand picking of snails consumes more
than two hours per 10 a (Kunimoto and Nishikawa, 2008).
In this researching, the number of snails is predicted in
different phases of the paddy field using the Lotka—
Volterra and Holling equations in order to develop an
intelligent robot which executes the tasks of controlling
of weeds and snails in the paddy.

Fig. 1. Predation of rice plants immediately after transplant-
ing in lowland paddy field at Kyushu University Farm
on the night of June 20™, 2008.

! Laboratory of Agricultural Ecology, Division of Agricultural
Ecology, Graduate School of Bioresources and
Bioenvironmental Sciences, Kyushu University

* Institute of Biological Control, Faculty of Agriculture of Kyushu
University
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PREDATION MODEL IN THE AGRICULTURAL
PRODUCTION ECOSYSTEM

In natural ecosystems we can see the behavior of the
snails and superior plants (weeds or rice plants) accord-
ing to the Lotka—Volterra model (Lotka, 1925, Volterra,
1926) as shown in Figure 2. We used the Lotka—Volterra
equations considering the different works in the paddy
for the farmers to do over the season of the crop in order
to predict the populations of snails or biomasses of rice
plants and weeds. We should understand the farm
works in the artificial ecosystem of the paddy and estab-
lish the initial conditions to model the ecosystem of the
paddy.

Rice plants
s SRHLS

Populations of rice plants and snails

Time, days

Fig. 2. Populations of plants and snails in a natural ecosystem
based on Lotka—Volterra model.

Model for growth rate of plants and snails based
on the equations of Lotka-Volterra

Our models are based on the equations of Lotka—
Volterra are as follows

dN

L =rN - aSN 0))
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ﬂ=bSN -mS )]
dt

Where, N: total density or biomass of superior plants
(rice plants and weeds), S: density of snails, 7: intrinsic
rate for superior plants, b=f - a: reproduction rate of snails
per 1 plant eaten, f: the rate at which snails turn plants
into offspring, a: predation rate coefficient, i.e., is the
search rate or attack efficiency of snails, m: snails mor-
tality rate of snails.

To understand the predation dynamics ecologically
we examine solutions at equilibrium analytically and get
the isoclines as follows

N({r-aS)=0 3)

S (bN-m) =0 €))
Jacobian Matrix for snails and weeds

It J(N, S) is a fixed point, we can use the equations 1

and 2 when growth rates are zero and then construct a
Jacobian matrix.

aN =rN — aSN

d
0 =rN —aSN B)
935 SN —ms

dt
0=bSN -mS (6)

Then we define the system of differential equations
using the equations 5 and 6.

d(Egb) 9(Egb)
aN 39
JN, S) =
d(Eq6) 3(FEqb)
aN a9

And we do linearization in order to find the Jacobian of
the vector function of the nonlinear system. We get the
rendered general Jacobian matrix for snail and rice
plants in predation as follows,

r—asS -aN
NS = s eNem M

By using the equations 3 and 4, we have two solutions
for the equation 3 as follows N= 0 or S=r/a. From the
equation 4 we have the following roots: S=0 and N=m/b,
so the equilibrium points are the following: P,(0,0) and
P,(m/b, v/a)

We analyzed the stability of the system by the evalu-
ation of the Jacobian matrix in each fixed points, P, and
b,

InP,

r-a-0 -a-0

JO0 ="y 0 boem

J(00) = _3@]

The eigenvalues and eigenvectors in P, are as follow

j-l:V» /12='“ma §1=(é)a '52:((1))

In P,
r m
r_g— —Q- -
a b
J(m/b, v/a) =
r m
brg by mm
J(m/b, r/a) = br
a 0

The eigenvalues and eigenvectors P, are as follows
e imom 6(3) &)

or
A=xvVab = +iw

Models for the populations of snails based on
Lotka-Volterra equations in different phases of
the agricultural production ecosystem of paddy in
Kyushu University Farm

The main phases of the agricultural production of
the paddy were described by Luna Maldonado and Nakaji
(2008) and these are the models for those stages based
on Lotka—Volterra equations for predation.

After tillage,
as
—-=0 8
0t )
After rice paddling,
ds
e =C 9
7 ®
Where C: constant.
After transplanting,
ds
——=bN,S~-mS 10
2 I (10)

Where, S: density of snails, b: reproduction rate of snails,
N, density of superior plants (rice plants and weeds),
m;: mortality rate of snails.
Ten days after transplanting,
as

5 bS(N, + N, + N, ) —mS (1D
N,: density of Tamagayatsuri, N,: density of Azena,
After rice plants have reached 40 cm of height,

m‘;*j = bSN, + N,) —mS (12)
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Model for growth rate of superior plants (rice
plants and weeds) based on the equation of Holling

We can analyze what happens after transplanting of
rice seedlings in the farm (Figure 3). We have in the
rice field an initial amount of rice plants transplanted by
the farmers. The snails, introduced by irrigation before
paddling, start to eat the rice plants and the population
of plants decreases where as the population of snails
increase rapidly. After ten days the weeds will show up
in the rice plot and the snails start to eat the weeds and
the population of plants will keep almost constant. The
snail’s population still grows up until the populations of
weeds start to decline, and then the snails suffered of
hunger, therefore the population of snails will reduce,
until the weeds will show up again in the field.

wmewwnw  Rice plants
e Snails

Weeds

-------

Populations of rice plants and snails

Time, days

Fig. 3. Population dynamics of rice plants, snails and weeds in the
agricultural production of paddy in lowland at Kyushu
University Farm.

The Holling equation is an extension of the equation
of Lotka—Volterra that adds a functional response
(changes in the predation as prey's density increases).
We considered the equations of Holling Type I (Holling,
1959) in order to fit our models to the agricultural pro-
duction ecosystem as follows.

dN ( N)_ pNS a3)

————=yN |1l -

dt K 1+aN
Where, 7: intrinsic rate for superior plants (rice plants or
weeds) in the paddy, N: total density or biomass of supe-
rior plants (rice plants and weeds), K: carrying capacity
of superior plants, p: predation rate of superior plants by
snails, S is the density of snails and a: predation rate
coefficient, which is the search rate or attack efficiency
of snails.
The equation 13 can be expressed as follows

aN __ vN* A PNS
dt K 1+aN
Isocline
_aN _
dt
0=— N + N — piNS
1+aN

There are three possible equilibrium solutions for N as
follows

N=0 (14

or
2,2 _
N= a,(rka - r+ VrlPa?+2r°ka+7* 4mpSlc) (15)
2r
and
v N
§=—- (1+aN)(1+~—k-) (16)

Model for growth rate of snails based on the equa-
tion of Holling
as bNS

=_2" _mS 17
dt 1+aN an

Where, b: reproduction rate of snails and m: mortality
rate of snails.

Isocline
a5
dat
0= ﬂ.s’_ - mS
1+aN

The equilibrium solution is as follows

S=0 (18)

and

N=__"™__ (19)
b-ma

Jacobian Matrix for snail and superior plants
If JIN,S) is a fixed point, we can use the equations

.13 and 17 when growth rates are zero and then con-

struct a Jacobian matrix.

N N NS
=7‘N(1—7)—

dr 1+aN
0=- VZ +rN—1p+—AEV ©0)
as NS
= D -mS

at 1+aN



520 A. I, LUNA MALDONADO et al.

0o PNS o 91
=T 1taN T @D
Then we define the system of differential equations

using the equations 20 and 21.

3(Eq20) 8(Eq20)
aN as

JN, S) =
a(Eq21) a(Eg21)
aN aS

And we do linearization in order to find the Jacobian of
the vector function of the nonlinear system. We get the
rendered general Jacobian matrix for snails and superior
plants as follows,

_2rN e »S apNS _ PN
JV. S) = K 1+aN (A+aN)* 1+aN
bS  abNS bN m
1+aN  (1+alN)? 1+aN

(22)

Models for the populations of snails based on
Holling equations in different phases of the agri-
cultural production ecosystem of paddy in Kyushu
University Farm.

After tillage,
as
— =0 23
i (23)
After rice paddling,
as
° =C 24
4 2]
Where C: constant.
After transplanting,
as bN,S
a - ivaN ™ (25)

Where, S: density of snails, b: reproduction rate of snails,
N: density of rice plants and m: mortality rate of snails.
Ten days after transplanting,

dS _ bMV,+ N,+N,)S
dt 1+aN

—mS (26)

N, density of Tamagayatsuri, N,: density of Azena,
After rice plants have reached 40 cm of height,

as _ b, +N)S
at 1+aN

After transplanting, the initial conditions were N=T42,
S=100, r=1, K=750, p= 0.002, a=0.1, b=0.012 and m=0.1
we can get the chart of the Figure 4 using the equation
of Holling. In this phase of the rice crop season the
weeds have not shown up in the agricultural production
ecosystem. The snails start to eat young rice plants. We
can also see from the Figure 4 that population of rice
plants increased a little bit from 742 to 760 according to

-msS @7

Populations of rice plants and snails
&

Time, days
Fig. 4. Population dynamics of snails, rice plants and none weeds
during day 1 to day 10 after transplanting in a lot of b0
square meters.

the model used for ten days after transplanting.

We obtained the chart of the Figure 5 considering
from day 10 to day 100 after transplanting. The initial
conditions were N=760, S$=353, W=1 r=1, K=750,
p=0.002, a=0.1, b=0.012 and m=0.1. Where W: popula-
tion of weeds. In this phase of the rice crop season the
weeds have shown up in the agricultural production eco-
system.and snails eat both rice plants and weeds.

Using the equations 14, 15, 16, 19 and 20, we can
obtain the general equations of the stationary points by
substitution of the N and S in the general Jacobian equa-
tion 23 and then get the eigenvalues.

We analyzed the populations of plants and snails in
one of the fixed points by using Holling equations and
found that N=50 and S=400, and the Jacobian matrix is
as follows,

-0.019

1.642
J(P) = 0.018

~10.0002

The eigenvalues are: A, =1.640, 1,=0.018, therefore
that point is unstable.

Populations of rice plants, snails and weeds

% £ G Gy % B ¥ £
Time, days

Fig. 5. Population dynamics of snails, rice plants and weeds from

day 10 to day 100 after transplanting in a lot of 50 square

meters.
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DISCUSSION

The Lotka—Volterra and Holling equations estimate
quantitatively the populations of snails and plants; how-
ever, we should consider the different stages over the
crop season and make models that fit to those phases of
the ecosystem of rice production. Using the equations
of Holling we found that the first ten days after trans-
planting, the population of rice plants increased a little
bit and then became stable, however in the ecosystem of
paddy, the snails consume rice plants and therefore the
density of rice plants should be decreased and then
becomes stable.

In analysis of one the fixed points, N=50 and S=400;
however in the agricultural production ecosystem they
should be about N=730 and S=2.

CONCLUSION

The biodiversity of the agricultural production eco-
system will be enriched by through the prediction of the
number of snails to be removed of paddy in the different
phases of crop season. The models based on the equa-
tions of Lotka—Volterra and Holling considered the dif-
ferent farm works; however those models should be
modified in order to fit better to the ecosystem of rice
production. It is also necessary to model the agricultural
production ecosystem considering factors, such as tem-

perature, light and water depth.
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